Skip to main content
padlock icon - secure page this page is secure

CRYSTAL-CHEMICAL REGULARITIES AND IDENTIFICATION CRITERIA IN Fe-BEARING, K-DIOCTAHEDRAL 1M MICAS FROM X-RAY DIFFRACTION AND INFRARED SPECTROSCOPY DATA

Notice

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Iron-bearing K-dioctahedral 1M and 1Md micas are abundant in diverse geological environments and vary in composition from illite to celadonite through Fe-illite, Al-glauconite, and glauconite. The chemistry and structural features of these micas are complex and heterogeneous, reliable diagnostic criteria are lacking, and the conventional mineralogical nomenclature is ambiguous, which complicate the identification of these mica varieties. The objectives of the present study were to reveal the structural and crystal-chemical variability in Fe-bearing, K-dioctahedral 1M micas and to define composition ranges and identification criteria for the mica varieties in the series. A collection of samples of various compositions was studied using X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. Analysis of the relationships between unit-cell parameters and cation composition showed that the series included four groups, namely, Fe-bearing illites, Al-glauconites, glauconites, and celadonites and each group was characterized by a specific combination of unit-cell parameters and variation ranges. The illite group contained two distinct subgroups; Fe-bearing, Mg-rich illites and Fe-illites; which differ in the range of cation compositions and in FTIR characteristics. The boundary between Fe-illites and Al-glauconites occurs at a unit cell b value of ~9.05 Å and at ratios of octahedral Al to total trivalent octahedral cations that range between 0.60 and 0.65. The partially overlapping cation composition and cell parameter ranges may complicate the distinction between Al-glauconites and glauconites, which can still be unambiguously differentiated using FTIR data. The dramatically different XRD and FTIR characteristics confirmed that glauconite and celadonite should be treated as separate mineral species. The distinctive features of celadonite are relatively low csinβ values and reduced |ccosβ/a| values combined with b parameters lower than glauconites, but similar to Fe-illites. Celadonites also have distinct and sharp FTIR absorption bands at specific positions in the Si-O and OH stretching regions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CELADONITE; DIOCTAHEDRAL MICA; FTIR SPECTROSCOPY; GLAUCONITE; ILLITE; UNIT-CELL PARAMETERS; X-RAY DIFFRACTION

Document Type: Research Article

Publication date: August 1, 2017

This article was made available online on July 11, 2017 as a Fast Track article with title: "CRYSTAL-CHEMICAL REGULARITIES AND IDENTIFICATION CRITERIA IN Fe-BEARING K-DIOCTAHEDRAL 1 M MICAS FROM X-RAY DIFFRACTION AND INFRARED SPECTROSCOPY DATA.".

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more