Skip to main content
padlock icon - secure page this page is secure

Expansion Behavior of Octadecylammonium-Exchanged Low-to High-charge Reference Smectite-Group Minerals as Revealed by High-Resolution Transmission Electron Microscopy on Ultrathin Sections

Buy Article:

$20.00 + tax (Refund Policy)

Ultrathin sections of reference 2:1 layer silicates treated with octadecylammonium cations were examined using high-resolution transmission electron microscopy (HRTEM) to establish the layer structure. Hitherto, few HRTEM ultrathin-section data existed on the expansion behavior of smectite-group minerals with different interlayer-charge values. Without such information, the expansion behavior of both low-charge and high-charge smectite minerals cannot be characterized and the structures observed in HRTEM images of clay-mineral mixtures cannot be interpreted reliably. Reference smectite-group minerals (Upton, Wyoming low-charge montmorillonite; Otay, California high-charge montmorillonite; a synthetic fluorohectorite; and a Jeanne d'Arc Basin offshore Newfoundland clay sample) with a range of layer charge values were examined. To prevent possible intrusion of epoxy resin into interlayers during embedding, the clay samples were first embedded in epoxy, sectioned with an ultra microtome, and then treated with octadecylammonium cations before examination using HRTEM. Lattice-fringe images showed that lower-charge (<0.38 eq/O10(OH)2) 2:1 layers had 13 – 14 Å spacings, whereas higher-charge (>0.38 eq/O10(OH)2) 2:1 layers had 21 and 45 Å spacings. These differently expanded silicate layers can occur within the same crystal and an alternation of these layer types can generate rectorite-like structures. For comparison, clay samples were also treated with octadecylammonium before epoxy embedding and sectioning and then examined with HRTEM. These samples mostly had highly expanded interlayers due to epoxy intrusion in the interlayer space. The reference clay minerals embedded in epoxy resin, sectioned, and treated with octadecylammonium cations were used to characterize smectite-group minerals in a natural clay sample from the Jeanne d'Arc Basin, Eastern Canada. Smectite-group minerals in this sample revealed similar structures in lattice-fringe images to those observed in the pure reference clay samples. Rectorite-like structures observed in lattice-fringe images were in fact smectite crystals with short, alternating sequences of low-charge and high-charge smectite layers rather than illite-smectite (I-S) phases with expanded smectite layers and non-expanded 10 Å illite layers.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CLAY MINERALS; HIGH-RESOLUTION TRANSMISSION ELECTRON MICROSCOPY; LATTICE-FRINGE IMAGES; MIXED-LAYER ILLITE/SMECTITE; N-ALKYLAMMONIUM CATIONS; RECTORITE-LIKE STRUCTURES; SMECTITE-GROUP MINERALS

Document Type: Research Article

Publication date: 01 August 2014

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more