Skip to main content
padlock icon - secure page this page is secure

The Dynamic Shear Modulus and Damping Ratio of Clay Nanocomposites

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Clay soils are very useful as liners in geotechnical structures such as landfill sites, dams, water channels, etc. Swelling is a common problem in clay liners, however. To better understand swelling properties, in the present study clay nanocomposites were produced by means of the sol gel method, using a hydrophobic clay, polymers (locust bean gum, latex, glycerine, vinyl acrylic copolymer), and rubber powder. The study focused on the swelling and dynamic properties (secant shear modulus and damping ratio) of the clay nanocomposites researched experimentally in laboratory conditions. The dynamic tests were conducted on samples compacted using two different compaction energy levels. The test results were compared with those of natural clay and hydrophobic organo-clay. The test results revealed that the damping ratios and secant shear modulus of clay nanocomposites without rubber (CNC) and with rubber (CNCr) that were compacted with both the E1 and E2 energy levels were increased and decreased, respectively. In addition, with increasing percentage of vinyl acrylic in nanoclay composites, the secant shear modulus values were decreased and damping ratio values were increased. Consequently, the test results found that the swelling and dynamic properties of clay nanocomposites can be optimized in order to attenuate the negative effects of dynamic loads on clay liners.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: August 1, 2014

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more