Skip to main content
padlock icon - secure page this page is secure

Crystal Chemistry and Surface Configurations of Two Iron-Bearing Trioctahedral Mica-1M Polytypes

Buy Article:

$20.00 + tax (Refund Policy)

The crystal chemical features of the bulk and the uppermost (001) surface layers of freshly cleaved surfaces of two trioctahedral Fe-rich mica-1M (space group C2/m) polytypes, i.e. a tetraferriphlogopite from an alkaline-carbonatitic complex near Tapira, Belo Horizonte, Minas Gerais, Brazil, and an Fe2+-bearing phlogopite containing less tetrahedral Fe3+ from the Kovdor carbonatite-bearing, alkaline-ultrabasic complex, Kola Peninsula, Russia, are explored here. Mineral-surface effects were investigated by X-ray Photoelectron Spectroscopy (XPS) and compared to the bulk structure derived from single-crystal X-ray diffraction data. Based on microprobe analysis and the X-ray study, the chemical formulae are [XII](K0.99)[VI](Fe2+ 0.08Fe3+ 0.15Mg2.76Ti0.01)[IV](Fe3+ 0.82Si3.18)O10.37F0.24(OH)1.39 and [XII](K0.94Na0.06)[VI](Fe2+ 0.17Fe3+ 0.05Mg2.75Mn0.01Ti0.05)[IV](Fe3+ 0.16Al0.84Si3.00)O10.21F0.35(OH)1.44 for tetra-ferriphlogopite and Fe-bearing phlogopite, respectively. The tetrahedrally coordinated sites of the two minerals differ, where Fe-for-Si substitution is at 20.5% in tetra-ferriphlogopite and at 4% in Fe-bearing phlogopite.

The bulk study showed that Fe3+ substitution increases the tetrahedral sheet thickness and the mean tetrahedral edge lengths in tetra-ferriphlogopite compared to Fe-bearing phlogopite. The tetrahedral rotation angle (α) changes remarkably from tetra-ferriphlogopite (α = 10.5°) to the Fe-bearing phlogopite (α = 8.5°), thus indicating a significantly greater initial lateral sheet misfit (leading to a greater tetrahedral ring distortion) between the tetrahedral and the octahedral sheets in the tetra-ferriphlogopite compared to Fe-bearing phlogopite. The Fe3+ substitution for Si and the differences in lateral dimensions of the tetrahedral and octahedral sheets affect the tetrahedral flattening angle (τ), with τ = 109.9° for tetraferriphlogopite and τ = 110.7° for Fe-bearing phlogopite.

The binding energy (BE) of photoelectron peaks in XPS is dependent on the chemical state of atoms and on their local environment at the near surface. The Mg in both phlogopites is bonded to F, with the BE of Mg1s increasing as coordinated oxygen atoms are substituted by fluorine. For Fe-rich phlogopite (BE = 1306.8 eV), the binding energy is greater than for tetra-ferriphlogopite (BE = 1305.9 eV), and this is consistent with the bulk composition having greater F-for-OH substitution in Fe-rich phlogopite (F0.35 vs. tetra-ferriphlogopite, F0.24 atoms per formula unit).
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CRYSTAL CHEMISTRY; CRYSTAL STRUCTURE; IRON-BEARING TRIOCTAHEDRAL MICA-1M; POLYTYPES; SURFACE

Document Type: Research Article

Publication date: 01 August 2014

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more