Skip to main content
padlock icon - secure page this page is secure

The pore structure of compacted and partly saturated MX-80 bentonite at different dry densities

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Compacted MX-80 bentonite is a potential backfill material in radioactive-waste repositories. Pore space in MX-80 has been the subject of considerable debate. 3D reconstructions of the pore space based on tomographic methods could provide new insights into the nature of the pore space of compacted bentonites. To date, few such reconstructions have been done because of problems with the preparation of bentonite samples for electron microscopy. The nanoscale intergranular pore space was investigated here by cryo-Focused Ion Beam nanotomography (FIB-nt) applied to previously high-pressure frozen MX-80 bentonite samples. This approach allowed a tomographic investigation of the in situ microstructure related to different dry densities (1.24, 1.46, and 1.67 g/cm3). The FIB-nt technique is able to resolve intergranular pores with radii >10 nm. With increasing dry density (1.24 – 1.67 g/cm3) the intergranular porosity (>10 nm) decreased from ∼5 vol.% to 0.1 vol.%. At dry densities of 1.24 and 1.46 g/cm3, intergranular pores were filled with clay aggregates, which formed a mesh-like structure, similar to the honeycomb structure observed in diagenetic smectite. Unlike 'typical' clay gels, the cores of the honeycomb structure were not filled with pure water, but instead were filled with a less dense material which presumably consists of very fine clay similar to a colloid. In the low-density sample this honeycomb-structured material partly filled the intergranular pore space but some open pores were also present. In the 1.46 g/cm3 sample, the material filled the intergranular pores almost completely. At the highest densities investigated (1.67 g/cm3), the honeycomb-structured material was not present, probably because of the lack of intergranular pores which suppressed the formation of the honeycomb framework or skeleton consisting of clay aggregates.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: June 1, 2014

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more