Skip to main content
padlock icon - secure page this page is secure

The effect of amino acids on the dissolution rates of amorphous silica in near-neutral solution

Buy Article:

$20.00 + tax (Refund Policy)

Amino acids are ubiquitous in the Earth's surface environments as reactive biological molecules produced by every living thing including bacteria. To evaluate the effects of amino acids on mineral dissolution and to reveal the mechanism by which they interact with the mineral surface, we performed dissolution experiments of X-ray amorphous silica in solution containing 0.1 mmol Na with 10.0 mmol amino acids such as cysteine, asparagine, serine, tryptophan, alanine, threonine, histidine, lysine and arginine in near-neutral solutions. Dissolution experiments in solutions of 0.1, 1.0 and 10.0 mmol NaCl without amino acids were also conducted as amino acid-free controls. The results of this study indicate that basic amino acids such as histidine, lysine and arginine can interact more strongly with the negatively charged surface of amorphous silica than other non-basic amino acids due to their greater dissociation, thus forming cationic species. This electrostatical interaction enhanced dissolution rates of amorphous silica by approximately one order of magnitude compared with amino acid-free controls. In contrast, no significant effect on the dissolution rates of amorphous silica was observed in solutions containing cysteine, asparagine, serine, tryptophan, alanine and threonine because of lesser interaction with the surface of amorphous silica.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 August 2007

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more