Skip to main content
padlock icon - secure page this page is secure

Upper Airway Dysfunction Associated with Collapse of the Apex of the Corniculate Process of the Left Arytenoid Cartilage During Exercise in 15 Horses

Buy Article:

$52.00 + tax (Refund Policy)

Objective

To report dynamic collapse of the apex of the left corniculate process under the right corniculate process into the airway at the dorsal apposition of the paired arytenoid cartilages during exercise as a cause of upper airway dysfunction in horses. Design

Retrospective study. Animals

Fifteen horses with a history of poor performance and/or upper respiratory tract noise during exercise. Methods

Video recordings of all horses referred for upper airway evaluation using high-speed treadmill videoendoscopy (HSTV) between January 1998 and December 2003 were reviewed. Records of horses that developed dynamic collapse of the apex of the left corniculate process into the airway were included. Clinical history, age, gender, breed, and use of the horse were retrieved. Results

Of 309 horses referred for examination for poor performance and/or upper respiratory tract noise during exercise, 15 (4.9%) had collapse of the apex of the left corniculate process under the right and into the airway at the dorsal apposition between the paired arytenoid cartilages during HSTV. There were 3 females and 13 males, aged from 2 to 5 years. Five horses had previous surgery for left recurrent laryngeal neuropathy (RLN): 2 had nerve muscle pedicle graft and 3 had laryngeal prosthesis. During HSTV, all 15 horses had progressive collapse of the apex of the left corniculate process under the right at the dorsal apposition of the 2 arytenoid cartilages, and into the dorsal aspect of the rima glottidis. Review of video recordings revealed that collapse of the apex of the corniculate process was followed by progressive collapse of the left aryepiglottic fold and left vocal fold. The ventral aspect of the left corniculate cartilage maintained abduction in all horses. Two horses also had progressive collapse of the right vocal fold, 1 had rostral displacement of the palatopharyngeal arch, and another had dorsal displacement of the soft palate. Conclusions

Dynamic collapse of the apex of the left corniculate process of the arytenoid cartilage under the right is an uncommon cause of upper airway dysfunction in horses and the pathogenesis is unclear. We speculate that the left arytenoideus transversus muscle is unable to support the dorsal apposition between the arytenoid cartilages. This loss of support allows the elastic cartilage of the left corniculate process to collapse under the right and into the airway, as inspiratory pressure increases during exercise. This condition may be associated with an unusually advanced neuropathy of the adductor components of the left recurrent laryngeal nerve and may be an unusual manifestation of RLN; however, this is speculative and further investigation is required to determine its cause. Clinical Relevance

Dynamic collapse of the apex of the left corniculate process and into the airway at the dorsal apposition between the paired arytenoid cartilages can only be diagnosed during HSTV. It is an uncommon cause of upper airway dysfunction but may affect the athletic potential of racing Thoroughbreds and Standardbreds.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: exercise test; laryngeal collapse; left corniculate cartilage collapse; left laryngeal hemiplegia; upper airway dysfunction

Document Type: Research Article

Affiliations: From the Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia.

Publication date: November 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more