
Cytonuclear interactions remain stable during allopolyploid evolution despite repeated whole‐genome duplications in Brassica
Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two
divergent species can disrupt these fine‐tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential transcription of the
plastid donor over the other donor has been hypothesized to occur in allopolyploids. We used Brassica as a model to study the effects of paleopolyploidy in diploid parental species, as well as the effects of recent and ancient allopolyploidy in Brassica napus, on genes implicated
in plastid protein complexes. We first identified redundant nuclear copies involved in those complexes. Compared with cytosolic protein complexes and with genome‐wide retention rates, genes involved in plastid protein complexes show a higher retention of genes in duplicated and triplicated
copies. Those redundant copies are functional and are undergoing strong purifying selection. We then compared transcription patterns and sequences of those redundant gene copies between resynthesized allopolyploids and their diploid parents. The neopolyploids showed no biased subgenome expression
or maternal homogenization via gene conversion, despite the presence of some non‐synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor. Our results provide new insights on the evolution
of plastid protein complexes that could be tested and generalized in other allopolyploid species.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: Brassica napus; Brassica oleracea; Brassica rapa; allopolyploidy; chloroplast; duplicated genes; genome inheritance; intergenomic conflicts; interspecific hybridization
Document Type: Research Article
Publication date: May 1, 2019