Skip to main content
padlock icon - secure page this page is secure

Inducible reporter/driver lines for the Arabidopsis root with intrinsic reporting of activity state

Buy Article:

$52.00 + tax (Refund Policy)

Cell‐, tissue‐ or organ‐specific inducible expression systems are powerful tools for functional analysis of changes to the pattern, level or timing of gene expression. However, plant researchers lack standardised reagents that promote reproducibility across the community. Here, we report the development and functional testing of a Gateway‐based system for quantitatively, spatially and temporally controlling inducible gene expression in Arabidopsis that overcomes several drawbacks of the legacy systems. We used this modular driver/effector system with intrinsic reporting of spatio‐temporal promoter activity to generate 18 well‐characterised homozygous transformed lines showing the expected expression patterns specific for the major cell types of the Arabidopsis root; seed and plasmid vectors are available through the Arabidopsis stock centre. The system's tight regulation was validated by assessing the effects of diphtheria toxin A chain expression. We assessed the utility of Production of Anthocyanin Pigment 1 (PAP1) as an encoded effector mediating cell‐autonomous marks. With this shared resource of characterised reference driver lines, which can be expanded with additional promoters and the use of other fluorescent proteins, we aim to contribute towards enhancing reproducibility of qualitative and quantitative analyses.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Arabidopsis thaliana; PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1); estradiol‐inducible; reference lines; technical advance; tissue‐ and cell‐type‐specific reporter

Document Type: Research Article

Publication date: April 1, 2019

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more