Skip to main content
padlock icon - secure page this page is secure

Free Content Insertion of a transposon‐like sequence in the 5′‐flanking region of the YUCCA gene causes the stony hard phenotype

Download Article:
 Download
(PDF)
 
Melting‐flesh peaches produce large amounts of ethylene, resulting in rapid fruit softening at the late‐ripening stage. In contrast, stony hard peaches do not soften and produce little ethylene. The indole‐3‐acetic acid (IAA) level in stony hard peaches is low at the late‐ripening stage, resulting in low ethylene production and inhibition of fruit softening. To elucidate the mechanism of low IAA concentration in stony hard peaches, endogenous levels of IAA and IAA intermediates or metabolites were analysed by ultra‐performance liquid chromatography‐tandem mass spectrometry. Although the IAA level was low, the indole‐3‐pyruvic acid (IPyA) level was high in stony hard peaches at the ripening stage. These results indicate that YUCCA activity is reduced in ripening stony hard peaches. The expression of one of the YUCCA isogenes in peach, PpYUC11, was suppressed in ripening stony hard peaches. Furthermore, an insertion of a transposon‐like sequence was found upstream of the PpYUC11 gene in the 5′‐flanking region. Analyses of the segregation ratio of the stony hard phenotype and genotype in F1 progenies indicated that the transposon‐inserted allele of PpYUC11, hd‐t, correlated with the stony hard phenotype. On the basis of the above findings, we propose that the IPyA pathway (YUCCA pathway) is the main auxin biosynthetic pathway in ripening peaches of ‘Akatsuki’ and ‘Manami’ cultivars. Because IAA is not supplied from storage forms, IAAde novo synthesis via the IPyA pathway (YUCCA pathway) in mesocarp tissues is responsible for auxin generation to support fruit softening, and its disruption can lead to the stony hard phenotype.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: IPyA pathway (YUCCA pathway); Prunus persica (L). Batsch; YUCCA; auxin; stony hard peach; transposon

Document Type: Research Article

Publication date: November 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more