
Hybridization‐facilitated genome merger and repeated chromosome fusion after 8 million years
The small genus Ricotia (nine species, Brassicaceae) is confined to the eastern Mediterranean. By comparative chromosome painting and a dated multi‐gene chloroplast phylogeny, we reconstructed the origin and subsequent evolution of Ricotia. The ancestral Ricotia
genome originated through hybridization between two older genomes with n = 7 and n = 8 chromosomes, respectively, on the Turkish mainland during the Early Miocene (c. 17.8 million years ago, Ma). Since then, the allotetraploid
(n = 15) genome has been altered by two independent descending dysploidies (DD) to n = 14 in Ricotia aucheri and the Tenuifolia clade (2 spp.). By the Late Miocene (c. 10 Ma), the latter clade started to evolve in
the most diverse Ricotia core clade (6 spp.), the process preceded by a DD event to n = 13. It is noteworthy that this dysploidy was mediated by a unique chromosomal rearrangement, merging together the same two chromosomes as were merged during the origin
of a fusion chromosome within the paternal n = 7 genome c. 20 Ma. This shows that within a time period of c. 8 Myr genome evolution can repeat itself and that structurally very similar chromosomes may originate repeatedly from the same
ancestral chromosomes by different pathways (end‐to‐end translocation versus nested chromosome insertion).
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: Ricotia; ancient polyploidy; chromosomal rearrangements; diploidization; dysploidy; hybridization; karyotype evolution
Document Type: Research Article
Publication date: November 1, 2018