
The ‘TranSeq’ 3′‐end sequencing method for high‐throughput transcriptomics and gene space refinement in plant genomes
High‐throughput RNA sequencing has proven invaluable not only to explore gene expression but also for both gene prediction and genome annotation. However, RNA sequencing, carried out on tens or even hundreds of samples, requires easy and cost‐effective sample preparation
methods using minute RNA amounts. Here, we present TranSeq, a high‐throughput 3′‐end sequencing procedure that requires 10‐ to 20‐fold fewer sequence reads than the current transcriptomics procedures. TranSeq significantly reduces costs and allows a greater
increase in size of sample sets analyzed in a single experiment. Moreover, in comparison with other 3′‐end sequencing methods reported to date, we demonstrate here the reliability and immediate applicability of TranSeq and show that it not only provides accurate transcriptome
profiles but also produces precise expression measurements of specific gene family members possessing high sequence similarity. This is difficult to achieve in standard RNA‐seq methods, in which sequence reads cover the entire transcript. Furthermore, mapping TranSeq reads to the reference
tomato genome facilitated the annotation of new transcripts improving >45% of the existing gene models. Hence, we anticipate that using TranSeq will boost large‐scale transcriptome assays and increase the spatial and temporal resolution of gene expression data, in both model and
non‐model plant species. Moreover, as already performed for tomato (ITAG3.0; www.solgenomics.net), we strongly advocate its integration into current and future genome annotations.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: RNA‐seq; TranSeq; genome annotation; paralogous genes; technical advance; tomato
Document Type: Research Article
Publication date: October 1, 2018