Skip to main content
padlock icon - secure page this page is secure

Free Content An ecophysiologically based mapping model identifies a major pleiotropic QTL for leaf growth trajectories of Phaseolus vulgaris

Download Article:
 Download
(PDF)
 
Crop modeling, a widely used tool to predict plant growth and development in heterogeneous environments, has been increasingly integrated with genetic information to improve its predictability. This integration can also shed light on the mechanistic path that connects the genotype to a particular phenotype under specific environments. We implemented a bivariate statistical procedure to map and identify quantitative trait loci (QTLs) that can predict the form of plant growth by estimating cultivar‐specific growth parameters and incorporating these parameters into a mapping framework. The procedure enables the characterization of how QTLs act differently in response to developmental and environmental cues. We used this procedure to map growth parameters of leaf area and mass in a mapping population of the common bean (Phaseolus vulgaris L.). Different sets of QTLs are responsible for various aspects of growth, including the initiation time of growth, growth rate, inflection point and asymptotic growth. A major QTL of a large effect was identified to pleiotropically affect trait expression in distinct environments and different traits expressed on the same organism. The integration of crop models and QTL mapping through our statistical procedure provides a powerful means of building a more precise predictive model of genotype‐phenotype relationships for crops.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: QTL; crop model; functional mapping; growth equation; the common bean

Document Type: Research Article

Publication date: September 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more