Skip to main content
padlock icon - secure page this page is secure

Free Content Wounding of Arabidopsis leaves induces indole‐3‐carbinol‐dependent autophagy in roots of Arabidopsis thaliana

Download Article:
 Download
(PDF)
 
In cruciferous plants insect attack or physical damage induce the synthesis of the glucosinolate breakdown product indole‐3‐carbinol, which plays a key role in the defense against attackers. Indole‐3‐carbinol also affects plant growth and development, acting as an auxin antagonist by binding to the TIR1 auxin receptor. Other potential functions of indole‐3‐carbinol and the underlying mechanisms in plant biology are unknown. Here we show that an indole‐3‐carbinol‐dependent signal induces specific autophagy in root cells. Leaf treatment with exogenous indole‐3‐carbinol or leaf‐wounding induced autophagy and inhibited auxin response in the root. This induction is lost in glucosinolate‐defective mutants, indicating that the effect of indole‐3‐carbinol is transported in the plants. Thus, indole‐3‐carbinol is not only a defensive metabolite that repels insects, but is also involved in long‐distance communication regulating growth and development in plants.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: TIR1/AFBs; autophagy; auxin; glucosinolates; indole‐3‐carbinol; wounding Arabidopsis thaliana

Document Type: Research Article

Publication date: September 1, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more