Skip to main content
padlock icon - secure page this page is secure

Free Content Agrobacterium T‐DNA integration into the plant genome can occur without the activity of key non‐homologous end‐joining proteins

Download Article:
 Download
(PDF)
 
Non‐homologous end joining (NHEJ) is the major model proposed for Agrobacterium T‐DNA integration into the plant genome. In animal cells, several proteins, including KU70, KU80, ARTEMIS, DNA‐PKcs, DNA ligase IV (LIG4), Ataxia telangiectasia mutated (ATM), and ATM‐ and Rad3‐related (ATR), play an important role in ‘classical’ (c)NHEJ. Other proteins, including histone H1 (HON1), XRCC1, and PARP1, participate in a ‘backup’ (b)NHEJ process. We examined transient and stable transformation frequencies of Arabidopsis thaliana roots mutant for numerous NHEJ and other related genes. Mutants of KU70, KU80, and the plant‐specific DNA LIGASE VI (LIG6) showed increased stable transformation susceptibility. However, these mutants showed transient transformation susceptibility similar to that of wild‐type plants, suggesting enhanced T‐DNA integration in these mutants. These results were confirmed using a promoter‐trap transformation vector that requires T‐DNA integration into the plant genome to activate a promoterless gusA (uidA) gene, by virus‐induced gene silencing (VIGS) of Nicotiana benthamiana NHEJ genes, and by biochemical assays for T‐DNA integration. No alteration in transient or stable transformation frequencies was detected with atm, atr, lig4, xrcc1, or parp1 mutants. However, mutation of parp1 caused high levels of T‐DNA integration and transgene methylation. A double mutant (ku80/parp1), knocking out components of both NHEJ pathways, did not show any decrease in stable transformation or T‐DNA integration. Thus, T‐DNA integration does not require known NHEJ proteins, suggesting an alternative route for integration.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Agrobacterium; Arabidopsis thaliana; Nicotiana benthamiana; T‐DNA integration; non‐homologous end joining; plant transformation

Document Type: Research Article

Publication date: March 1, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more