Skip to main content
padlock icon - secure page this page is secure

Free Content Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex

Download Article:
Cyclic electron transport (CET) around photosystem I (PSI) plays an important role in balancing the ATP/NADPH ratio and the photoprotection of plants. The NAD(P)H dehydrogenase complex (NDH) has a key function in one of the CET pathways. Current knowledge indicates that, in order to fulfill its role in CET, the NDH complex needs to be associated with PSI; however, until now there has been no direct structural information about such a supercomplex. Here we present structural data obtained for a plant PSI–NDH supercomplex. Electron microscopy analysis revealed that in this supercomplex two copies of PSI are attached to one NDH complex. A constructed pseudo‐atomic model indicates asymmetric binding of two PSI complexes to NDH and suggests that the low‐abundant Lhca5 and Lhca6 subunits mediate the binding of one of the PSI complexes to NDH. On the basis of our structural data, we propose a model of electron transport in the PSI–NDH supercomplex in which the association of PSI to NDH seems to be important for efficient trapping of reduced ferredoxin by NDH.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Hordeum vulgare; PSI–NDH supercomplex; clear native electrophoresis; cyclic electron transport; single particle electron microscopy

Document Type: Research Article

Publication date: February 1, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more