Skip to main content
padlock icon - secure page this page is secure

Free Content Genome‐wide transcriptome dissection of the rice root system: implications for developmental and physiological functions

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

The root system is a crucial determinant of plant growth potential because of its important functions, e.g. uptake of water and nutrients, structural support and interaction with symbiotic organisms. Elucidating the molecular mechanism of root development and functions is therefore necessary for improving plant productivity, particularly for crop plants, including rice (Oryza sativa). As an initial step towards developing a comprehensive understanding of the root system, we performed a large‐scale transcriptome analysis of the rice root via a combined laser microdissection and microarray approach. The crown root was divided into eight developmental stages along the longitudinal axis and three radial tissue types at two different developmental stages, namely: epidermis, exodermis and sclerenchyma; cortex; and endodermis, pericycle and stele. We analyzed a total of 38 microarray data and identified 22 297 genes corresponding to 17 010 loci that showed sufficient signal intensity as well as developmental‐ and tissue type‐specific transcriptome signatures. Moreover, we clarified gene networks associated with root cap function and lateral root formation, and further revealed antagonistic and synergistic interactions of phytohormones such as auxin, cytokinin, brassinosteroids and ethylene, based on the expression pattern of genes related to phytohormone biosynthesis and signaling. Expression profiling of transporter genes defined not only major sites for uptake and transport of water and nutrients, but also distinct signatures of the radial transport system from the rhizosphere to the xylem vessel for each nutrient. All data can be accessed from our gene expression profile database, RiceXPro (), thereby providing useful information for understanding the molecular mechanisms involved in root system development of crop plants.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Genome Resource Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan 2: Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan 3: Mitsubishi Space Software Co. Ltd., Tsukuba, Ibaraki 305-0032, Japan 4: Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan

Publication date: January 1, 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more