Skip to main content
padlock icon - secure page this page is secure

Free Content Interplay of MYB factors in differential cell expansion, and consequences for tomato fruit development

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

We previously identified SlFSM1 as an early fruit‐specific gene encoding a short protein harboring a non‐canonical SANT/MYB‐like domain. Here, we investigated the role of FSM1 during fruit development in tomato and its mode of action. By analyzing tomato plants ectopically expressing FSM1, we established that it negatively affects cell expansion, particularly of those cells with the highest potential to expand, such as those residing inner to the vascular bundles in the fruit pericarp. This function of FSM1 differs from that of the snapdragon FSM1‐like gene, RAD, which through an antagonistic activity with DIV participates in establishing floral asymmetry. Revealing an additional component of the FSM1/RAD regulatory complex, we show here that FSM1 physically interacts with FSB1, a previously uncharacterized factor harboring an atypical MYB repeat. We also demonstrate that FSB1 physically interacts with the transcription factor MYBI, a homolog of DIV. Our results show that the formation of the FSB1–MYBI complex is competed by FSM1, which recognizes in FSB1 the same region as MYBI does. Taken together, these studies expose a function for the FSM1/FSB1/MYBI complex in controlling tomato cell expansion, while revealing a mechanism by which competing MYB–MYB interactions could participate in the control of gene expression.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Plant Biotechnology Center and Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA 2: The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet-Dagan 50250, Israel

Publication date: October 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more