Skip to main content
padlock icon - secure page this page is secure

Free Content Using spontaneous photon emission to image lipid oxidation patterns in plant tissues

Download Article:
 Download
(PDF)
 
Summary

Plants, like almost all living organisms, spontaneously emit photons of visible light. We used a highly sensitive, low‐noise cooled charge coupled device camera to image spontaneous photon emission (autoluminescence) of plants. Oxidative stress and wounding induced a long‐lasting enhancement of plant autoluminescence, the origin of which is investigated here. This long‐lived phenomenon can be distinguished from the short‐lived chlorophyll luminescence resulting from charge recombinations within the photosystems by pre‐adapting the plant to darkness for about 2 h. Lipids in solvent were found to emit a persistent luminescence after oxidation in vitro, which exhibited the same time and temperature dependence as plant autoluminescence. Other biological molecules, such as DNA or proteins, either did not produce measurable light upon oxidation or they did produce a chemiluminescence that decayed rapidly, which excludes their significant contribution to the in vivo light emission signal. Selective manipulation of the lipid oxidation levels in Arabidopsis mutants affected in lipid hydroperoxide metabolism revealed a causal link between leaf autoluminescence and lipid oxidation. Addition of chlorophyll to oxidized lipids enhanced light emission. Both oxidized lipids and plants predominantly emit light at wavelengths higher than 600 nm; the emission spectrum of plant autoluminescence was shifted towards even higher wavelengths, a phenomenon ascribable to chlorophyll molecules acting as luminescence enhancers in vivo. Taken together, the presented results show that spontaneous photon emission imaged in plants mainly emanates from oxidized lipids. Imaging of this signal thus provides a simple and sensitive non‐invasive method to selectively visualize and map patterns of lipid oxidation in plants.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Julius-von-Sachs-Institute for Biosciences, Pharmaceutical Biology, Biocenter, University of Wuerzburg, D-97082 Wuerzburg, Germany

Publication date: September 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more