Skip to main content
padlock icon - secure page this page is secure

Free Content OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


The homeodomain transcription factor KNAT7 has been reported to be involved in the regulation of secondary cell wall biosynthesis. Previous work suggested that KNAT7 can interact with members of the Ovate Family Protein (OFP) transcription co‐regulators. However, it remains unknown whether such an OFP–KNAT7 complex could be involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. We re‐tested OFP1 and OFP4 for their abilities to intact with KNAT7 using yeast two‐hybrid assays, and verified KNAT7–OFP4 interaction but found only weak interaction between KNAT7 and OFP1. Further, the interaction of KNAT7 with OFP4 appears to be mediated by the KNAT7 homeodomain. We used bimolecular fluorescence complementation to confirm interactions and found that OFP1 and OFP4 both interact with KNAT7 in planta. Using a protoplast transient expression system we showed that KNAT7 as well as OFP1 and OFP4 act as transcriptional repressors. Furthermore, in planta interactions between KNAT7 and both OFP1 and OFP4 enhance KNAT7’s transcriptional repression activity. An ofp4 mutant exhibited similar irx and fiber cell wall phenotypes as knat7, and the phenotype of a double ofp4 knat7mutant was similar to those of the single mutants, consistent with the view that KNAT7 and OFP function in a common pathway or complex. Furthermore, the pleiotropic OFP1 and OFP4 overexpression phenotype was suppressed in a knat7 mutant background, suggesting that OFP1 and OFP4 functions depend at least partially on KNAT7 function. We propose that KNAT7 forms a functional complex with OFP proteins to regulate aspects of secondary cell wall formation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Publication date: July 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more