Skip to main content
padlock icon - secure page this page is secure

Free Content A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

Root system architecture responds plastically to some abiotic stresses, including phosphorus (P), iron (Fe) and water deficiency, but its response mechanism is still unclear. We cloned and characterized a vegetative β-expansin gene, GmEXPB2, from a Pi starvation-induced soybean cDNA library. Transient expression of 35S::GmEXPB2-GFP in onion epidermal cells verified that GmEXPB2 is a secretory protein located on the cell wall. GmEXPB2 was found to be primarily expressed in roots, and was highly induced by Pi starvation, and the induction pattern was confirmed by GUS staining in transgenic soybean hairy roots. Results from intact soybean composite plants either over-expressing GmEXPB2 or containing knockdown constructs, showed that GmEXPB2 is involved in hairy root elongation, and subsequently affects plant growth and P uptake, especially at low P levels. The results from a heterogeneous transformation system indicated that over-expressing GmEXPB2 in Arabidopsis increased root cell division and elongation, and enhanced plant growth and P uptake at both low and high P levels. Furthermore, we found that, in addition to Pi starvation, GmEXPB2 was also induced by Fe and mild water deficiencies. Taken together, our results suggest that GmEXPB2 is a critical root β-expansin gene that is intrinsically involved in root system architecture responses to some abiotic stresses, including P, Fe and water deficiency. In the case of Pi starvation responses, GmEXPB2 may enhance both P efficiency and P responsiveness by regulating adaptive changes of the root system architecture. This finding has great agricultural potential for improving crop P uptake on both low-P and P-fertilized soils.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: abiotic stress; cell-wall protein; root system architecture; soybean; β-expansin

Document Type: Research Article

Publication date: May 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more