Skip to main content
padlock icon - secure page this page is secure

Free Content A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


The Oryza sativa (rice) resistance gene Pia confers resistance to the blast fungus Magnaporthe oryzae carrying the AVR-Pia avirulence gene. To clone Pia, we employed a multifaceted genomics approach. First, we selected 12 R-gene analog (RGA) genes encoding nucleotide binding site-leucine rich repeats (NBS-LRRs) proteins from a region on chromosome 11 that shows linkage to Pia. By using seven rice accessions, we examined the association between Pia phenotypes and DNA polymorphisms in the 10 genes, which revealed three genes (Os11gRGA3–Os11gRGA5) exhibiting a perfect association with the Pia phenotypes. We also screened ethyl methane sulfonate (EMS)-treated mutant lines of the rice cultivar ‘Sasanishiki’ harboring Pia, and isolated two mutants that lost the Pia phenotype. DNA sequencing of Os11gRGA3–Os11gRGA5 from the two mutant lines identified independent mutations of major effects in Os11gRGA4. The wild-type ‘Sasanishiki’ allele of Os11gRGA4 (SasRGA4) complemented Pia function in both mutants, suggesting that SasRGA4 is necessary for Pia function. However, when the rice cultivar ‘Himenomochi’ lacking Pia was transfected with SasRGA4, the Pia phenotype was not recovered. An additional complementation study revealed that the two NBS-LRR-type R genes, SasRGA4 and SasRGA5, that are located next to each other and oriented in the opposite direction are necessary for Pia function. A population genetics analysis of SasRGA4 and SasRGA5 suggests that the two genes are under long-term balancing selection.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: association genetics; hypersensitive response; mutant screening; phylogenetics; protoplast assay

Document Type: Research Article

Affiliations: 1: Iwate Agricultural Research Center, Kitakami, Iwate 024-0003, Japan 2: Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan 3: Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan

Publication date: May 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more