Skip to main content
padlock icon - secure page this page is secure

Free Content Sphingolipids involvement in plant endomembrane differentiation: the BY2 case

Download Article:
 Download
(PDF)
 
Summary

Sphingolipids play an essential role in the functioning of the secretory pathway in eukaryotic organisms. Their importance in the functional organization of plant cells has not been studied in any detail before. The sphingolipid synthesis inhibitor fumonisin B1 (FB1), a mycotoxin acting as a specific inhibitor of ceramide synthase, was tested for its effects on cell growth, cell polarity, cell shape, cell cycle and on the ultrastructure of BY2 cells. We used cell lines expressing different GFP-tagged markers for plant cell compartments, as well as a Golgi marker fused to the photoconvertible protein Kaede. Light and electron microscopy, combined with flow cytometry, were applied to analyse the morphodynamics and architecture of compartments of the secretory pathway. The results indicate that FB1 treatment had severe effects on cell growth and cell shape, and induced a delay in cell division processes. The cell changes were accompanied by the formation of the endoplasmic reticulum (ER)-derived tubular aggregates (FB1-induced compartments), together with an inhibition of cargo transport from the ER to the Golgi apparatus. A change in polar localization of the auxin transporter PIN1 was also observed, but endocytic processes were little affected. Electron microscopy studies confirmed that molecular FB1 targets were distinct from brefeldin A (BFA) targets. We propose that the reported effects of inhibition of ceramide biosynthesis reflect the importance of sphingolipids during cell growth and establishment of cell polarity in higher plant cells, notably through their contribution to the functional organization of the ER or its differentiation into distinct compartments.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: endomembrane; fumonisin B1; light and electron microscopy; plant cells; sphingolipids

Document Type: Research Article

Affiliations: 1: Laboratoire Dynamique de la Compartimentation Cellulaire, CNRS UPR2355/IFR87, Institut des Sciences du Végétal, Centre de Recherche de Gif (FRC3115), 91198, Gif-sur-Yvette Cedex, France 2: Institut Jean-Pierre Bourgin, unité mixte de recherche 1318, INRA-AgroParisTech, Centre de Versailles-Grignon, 78026 Versailles cedex, France

Publication date: March 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more