Skip to main content
padlock icon - secure page this page is secure

Free Content The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes

Download Article:
 Download
(PDF)
 
Summary

AUXIN-BINDING PROTEIN 1 (ABP1) is not easily accessible for molecular studies because the homozygous T-DNA insertion mutant is embryo-lethal. We found that the heterozygous abp1/ABP1 insertion mutant has defects in auxin physiology-related responses: higher root slanting angles, longer hypocotyls, agravitropic roots and hypocotyls, aphototropic hypocotyls, and decreased apical dominance. Heterozygous plants flowered earlier than wild-type plants under short-day conditions. The length of the main root, the lateral root density and the hypocotyl length were little altered in the mutant in response to auxin. Compared to wild-type plants, transcription of early auxin-regulated genes (IAA2, IAA11, IAA13, IAA14, IAA19, IAA20, SAUR9, SAUR15, SAUR23, GH3.5 and ABP1) was less strongly up-regulated in the mutant by 0.1, 1 and 10 μmIAA. Surprisingly, ABP1 was itself an early auxin-up-regulated gene. IAA uptake into the mutant seedlings during auxin treatments was indistinguishable from wild-type. Basipetal auxin transport in young roots was slower in the mutant, indicating a PIN2/EIR1 defect, while acropetal transport was indistinguishable from wild-type. In the eir1 background, three of the early auxin-regulated genes tested (IAA2, IAA13 and ABP1) were more strongly induced by 1 μmIAA in comparison to wild-type, but eight of them were less up-regulated in comparison to wild-type. Similar but not identical disturbances in regulation of early auxin-regulated genes indicate tight functional linkage of ABP1 and auxin transport regulation. We hypothesize that ABP1 is involved in the regulation of polar auxin transport, and thus affects local auxin concentration and early auxin gene regulation. In turn, ABP1 itself is under the transcriptional control of auxin.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: AUXIN-BINDING PROTEIN 1; abp1/ABP1 mutant; auxin transport; auxin-induced transcription; gravitropism; phototropism

Document Type: Research Article

Affiliations: 1: Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzforschung, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Straße 2, D-30419 Hannover, Germany 2: Max-Planck-Institut für Züchtungsforschung, Department of Plant–Microbe Interaction, Carl von Linné-Weg 10, D-50829 Köln, Germany 3: Georg-August Universität, Büsgen-Institut, Forstbotanik und Baumphysiologie, Büsgenweg 2, D-37077 Göttingen, Germany

Publication date: January 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more