Skip to main content
padlock icon - secure page this page is secure

Free Content Linking genotype to phenotype using the Arabidopsis unimutant collection

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


The large collections of Arabidopsis thaliana sequence-indexed T-DNA insertion mutants are among the most important resources to emerge from the sequencing of the genome. Several laboratories around the world have used the Arabidopsis reference genome sequence to map T-DNA flanking sequence tags (FST) for over 325 000 T-DNA insertion lines. Over the past decade, phenotypes identified with T-DNA-induced mutants have played a critical role in advancing both basic and applied plant research. These widely used mutants are an invaluable tool for direct interrogation of gene function. However, most lines are hemizygous for the insertion, necessitating a genotyping step to identify homozygous plants for the quantification of phenotypes. This situation has limited the application of these collections for genome-wide screens. Isolating multiple homozygous insert lines for every gene in the genome would make it possible to systematically test the phenotypic consequence of gene loss under a wide variety of conditions. One major obstacle to achieving this goal is that 12% of genes have no insertion and 8% are only represented by a single allele. Generation of additional mutations to achieve full genome coverage has been slow and expensive since each insertion is sequenced one at a time. Recent advances in high-throughput sequencing technology open up a potentially faster and cost-effective means to create new, very large insertion mutant populations for plants or animals. With the combination of new tools for genome-wide studies and emerging phenotyping platforms, these sequence-indexed mutant collections are poised to have a larger impact on our understanding of gene function.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: T-DNA; WiscDSLox; high-throughput genotyping; high-throughput phenotyping; high-throughput sequencing; homozygous lines; insertion mutant; mutagenesis; salk

Document Type: Research Article

Publication date: March 1, 2010

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more