Skip to main content
padlock icon - secure page this page is secure

Free Content Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

We have characterized the genetic and molecular origin of the reiterated reproductive meristem (RRM) somatic variant phenotype of grapevine cultivar Carignan. Here, we show that the extreme cluster proliferation and delayed anthesis observed in this somatic variant is caused by a single dominant mutation. Transcriptional profiling of Carignan and RRM plants during early stages of inflorescence development demonstrated the overexpression of a few regulatory genes, including VvTFL1A, a close TFL1 Arabidopsis homolog, in RRM inflorescences. Genetic and molecular analyses correlated the insertion of a class-II transposable element, Hatvine1-rrm, in the VvTFL1A promoter, with upregulation of the corresponding VvTFL1A allele in reproductive and vegetative organs of the shoot apex. These results suggest a role for this TFL1 grapevine homolog in the determination of inflorescence structure, with a critical effect on the size and branching pattern of grapevine fruit clusters. Our results demonstrate the existence of spontaneous cis-activation processes caused by class-II transposable elements in grapevine plants, and point to their possible role as a mechanism to generate somatic cell variation in perennial plants. This mechanism is expected to generate dominant phenotypes in chimeric sectors that can be readily exposed to natural selection.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: active transposition; grapevine; inflorescence development; inflorescence structure; somatic variation

Document Type: Research Article

Affiliations: 1: INRA-SupAgro, UMR DIA-PC, Campus SupAgro/INRA, 2 Place P. Viala, 34060 Montpellier Cedex, France 2: Department of Biology, Centre for Novel Agricultural Products, University of York, PO Box 373, York YO10 5YW, UK

Publication date: February 1, 2010

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more