Skip to main content
padlock icon - secure page this page is secure

Free Content Natural variation in maize architecture is mediated by allelic differences at the PINOID co-ortholog barren inflorescence2

Download Article:

We characterized allelic variation at barren inflorescence2 (bif2), a maize co-ortholog of the Arabidopsis PINOID protein kinase (PID), and tested for trait associations with bif2 in both an association mapping population of 277 diverse maize inbreds and in the inter-mated B73 × Mo17 (IBM) linkage population. Results from the quantitative analyses were compared with previous reports of bif2 phenotypes in mutagenesis studies. All three approaches (association, linkage, and mutagenesis) detect a significant effect of bif2 on tassel architecture. Association mapping implicates bif2 in an unexpectedly wide range of traits including plant height, node number, leaf length, and flowering time. Linkage mapping finds a significant interaction effect for node number between bif2 and other loci, in keeping with previous reports that bif2;spi1 and Bif2;Bif1 double mutants produce fewer phytomers. The Mo17 allele is associated with a reduced tassel branch zone and shows lower expression than the B73 allele in hybrid B73–Mo17 F1 inflorescences, consistent with the complete absence of tassel branches in the bif2 knockout mutant. Overall, these data suggest that allelic variation at bif2 affects maize architecture by modulating auxin transport during vegetative and inflorescence development.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: association mapping; barren inflorescence2; polar auxin transport; quantitative trait loci

Document Type: Research Article

Affiliations: 1: Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA 2: Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA

Publication date: May 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more