Skip to main content
padlock icon - secure page this page is secure

Free Content Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20–50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Chlamydomonas reinhardtii; biofuels; fatty acids; lipids; microalgae; triacylglycerol

Document Type: Research Article

Affiliations: 1: Department of Applied Biological Sciences, Arizona State University Polytechnic Campus, Mesa, AZ 85212, USA, 2: National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA, and 3: Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA

Publication date: May 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more