Skip to main content
padlock icon - secure page this page is secure

Free Content Gene silencing in plants using artificial microRNAs and other small RNAs

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Comprehensive analysis of gene function requires the detailed examination of mutant alleles. In Arabidopsis thaliana, large collections of sequence-indexed insertion and chemical mutants provide potential loss-of-function alleles for most annotated genes. However, limitations for phenotypic analysis include gametophytic or early sporophytic lethality, and the ability to recombine mutant alleles in closely linked genes, especially those present as tandem duplications. Transgene-mediated gene silencing can overcome some of these shortcomings through tissue-specific, inducible and partial gene inactivation, or simultaneous targeting of several, sequence-related genes. In addition, gene silencing is a convenient approach in species or varieties for which exhaustive mutant collections are not yet available. Typically, gene function is reduced post-transcriptionally, effected by small RNAs that act in a sequence-specific manner by base pairing to complementary mRNA molecules. A recently introduced approach is the use of artificial microRNAs (amiRNAs). Here, we review various strategies for small RNA-based gene silencing, and describe in detail the design and application of amiRNAs in many plant species.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: RNA interference; gene silencing; miRNA; microRNA; siRNA; transgenic plants

Document Type: Research Article

Publication date: February 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more