Skip to main content
padlock icon - secure page this page is secure

Free Content Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose vial-galactose/l-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-l-galactose tol-galactose 1-P. We show that a GDP-l-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-l-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate orl-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-l-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-l-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: VTC2; VTC5; circadian rhythm; guanosine diphosphate-l-galactose phosphorylase; light; vitamin C

Document Type: Research Article

Publication date: November 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more