Skip to main content
padlock icon - secure page this page is secure

Free Content The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Resistance to bacterial speck disease in tomato is activated by the physical interaction of the host Pto kinase with either of the sequence-dissimilar type III effector proteins AvrPto or AvrPtoB (HopAB2) from Pseudomonas syringae pv. tomato. Pto-mediated immunity requires Prf, a protein with a nucleotide-binding site and leucine-rich repeats. The N-terminal 307 amino acids of AvrPtoB were previously reported to interact with the Pto kinase, and we show here that this region (AvrPtoB1-307) is sufficient for eliciting Pto/Prf-dependent immunity against P. s. pv. tomato. AvrPtoB1-307 was also found to be sufficient for a virulence activity that enhances ethylene production and increases growth of P. s. pv. tomato and severity of speck disease on susceptible tomato lines lacking either Pto or Prf. Moreover, we found that residues 308–387 of AvrPtoB are required for the previously reported ability of AvrPtoB to suppress pathogen-associated molecular patterns-induced basal defenses in Arabidopsis. Thus, the N-terminal region of AvrPtoB has two structurally distinct domains involved in different virulence-promoting mechanisms. Random and targeted mutagenesis identified five tightly clustered residues in AvrPtoB1-307 that are required for interaction with Pto and for elicitation of immunity to P. s. pv. tomato. Mutation of one of the five clustered residues abolished the ethylene-associated virulence activity of AvrPtoB1-307. However, individual mutations of the other four residues, despite abolishing interaction with Pto and avirulence activity, had no effect on AvrPtoB1-307 virulence activity. None of these mutations affected the basal defense-suppressing activity of AvrPtoB1-387. Based on sequence alignments, estimates of helical propensity, and the previously reported structure of AvrPto, we hypothesize that the Pto-interacting domains of AvrPto and AvrPtoB1-307 have structural similarity. Together, these data support a model in which AvrPtoB1-307 promotes ethylene-associated virulence by interaction not with Pto but with another unknown host protein.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Pto kinase; guard hypothesis; immunity; programmed cell death; structural biology; type III effectors

Document Type: Research Article

Affiliations: 1: Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA 2: Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA 3: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA

Publication date: November 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more