Skip to main content
padlock icon - secure page this page is secure

Free Content Molecular cloning and function analysis of the stay green gene in rice

Download Article:

Chloroplasts undergo drastic morphological and physiological changes during senescence with a visible symptom of chlorophyll (Chl) degradation. A stay green mutant was identified and then isolated from the japonica rice (Oryza sativa) cv. Huazhiwu by γ-ray irradiation. The stay green mutant was characterized by Chl retention, stable Chl–protein complexes, and stable thylakoid membrane structures, but lost its photosynthetic competence during senescence. The gene, designated Stay Green Rice (SGR), was cloned by a positional cloning strategy encoding an ancient protein containing a putative chloroplast transit peptide. SGR protein was found in both soluble and thylakoid membranes in rice. SGR, like the gene for pheophorbide a oxygenase (PaO), was constitutively expressed, but was upregulated by dark-induced senescence in rice leaves. Senescence-induced expression of SGR and PaO was enhanced by ABA, but inhibited by cytokinin. Overexpression of SGR reduced the number of lamellae in the grana thylakoids and reduced the Chl content of normally growing leaves. This indicates that upregulation of SGR increases Chl breakdown during senescence in rice. A small quantity of chlorophyllide a accumulated in sgr leaves, but this also accumulated in wild-type rice leaves during senescence. Some pheophorbide a was detected in sgr leaves in the dark. According to these observations, we propose that SGR may be involved in regulating or taking part in the activity of PaO, and then may influence Chl breakdown and degradation of pigment-protein complex.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Chl breakdown; Oryza sativa L; senescence; stay green; thylakoid

Document Type: Research Article

Affiliations: 1: South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 2: Xinjiang Academy of Agricultural Science, Ulumuqi, 830000, China 3: Institute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing 100080, China

Publication date: October 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more