Skip to main content
padlock icon - secure page this page is secure

Free Content Ubiquitin C-terminal hydrolases 1 and 2 affect shoot architecture in Arabidopsis

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

Ubiquitin C-terminal hydrolases (UCHs) are a subset of de-ubiquitinating proteases that release covalently linked ubiquitin (Ub), and as such play essential roles in recycling Ub and reversing the action of Ub conjugation. We show here that two related Arabidopsis UCHs, UCH1, and UCH2, are important for shoot development. The UCH1 and 2 genes are ubiquitously expressed, with the corresponding proteins present in both the cytoplasm and nucleus. Unlike their animal and fungal counterparts, we found no evidence that the Arabidopsis UCH1 and 2 proteins stably associate with the 26S proteasome. Altering the levels of UCH1 and 2 has substantial effects on Arabidopsis shoot development, especially with respect to inflorescence architecture, with over-expression and double mutants enhancing and suppressing the outgrowth of cauline branches, respectively. Neither UCH1-over-expressing nor uch1-1 uch2-1 plants have detectably altered sensitivity to cytokinins or auxins individually, but exhibit an altered sensitivity to the ratio of the two hormones. UCH1-over-expressing plants show dramatically enhanced phenotypes when combined with auxin-insensitive mutants axr1-3 and axr2-1, suggesting that one or more aspects of auxin signaling are affected by this enzyme pair. Previous studies revealed that the ubiquitination and degradation of the AUX/IAA family of repressors is a key step in auxin signaling. Here, we show that turnover of a reporter fused to a representative AUX/IAA protein AXR3 is faster in the uch1-1 uch2-1 double mutant but slower in the UCH1 over-expression backgrounds. Taken together, our results indicate that de-ubiquitination helps to modify plant shoot architecture, possibly via its ability to directly or indirectly protect upstream target proteins involved in auxin/cytokinin signaling from Ub-mediated degradation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: auxin; cytokinin; de-ubiquitination; shoot development; ubiquitin

Document Type: Research Article

Publication date: August 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more