Skip to main content
padlock icon - secure page this page is secure

Free Content SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

Post-transcriptional gene silencing (PTGS) is a sequence-specific RNA degradation process conserved in fungi, plants and animals. The trigger of the mechanism is double-stranded RNA derived from transgenic or endogenous loci and formed by intra- or inter-molecular interactions of single-stranded RNAs or the action of RNA-dependent RNA polymerases (RDRs). Double-stranded RNA from various sources is processed by one of the four Dicer-like (DCL) proteins in Arabidopsis, and the resulting short RNAs enter into at least four different pathways, one of which involves the production of trans-acting short interfering RNAs (tasiRNAs). We report here a novel gene (SDE5) that is required for transgene silencing and the production of tasiRNAs. Mutation in SDE5 also results in hyper-susceptibility to cucumber mosaic virus but not turnip mosaic virus. However, like RDR6, SDE5 is not involved in inverted repeat-induced transgene silencing or the biogenesis of microRNAs and 24 nt siRNAs produced by DCL3. Based on these results, we propose that SDE5 acts together with RDR6 in generating double-stranded RNA from specific single-stranded RNAs. As the sequence of SDE5 has sequence features shared by TAP, a human mRNA export factor, we propose that its role could be in the transport of RNA molecules that are converted into a double-stranded form by RDR6.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: PTGS; RNAi; miRNA; short RNA; siRNA; virus resistance

Document Type: Research Article

Affiliations: 1: School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK, and 2: The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK

Publication date: April 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more