Skip to main content
padlock icon - secure page this page is secure

Free Content crinkled leaves 8 – A mutation in the large subunit of ribonucleotide reductase – leads to defects in leaf development and chloroplast division in Arabidopsis thaliana

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


The crinkled leaves8 (cls8) mutant of Arabidopsis thaliana displays a developmental phenotype of abnormal leaf and flower morphology, reduced root growth and bleached leaf sections. Map-based cloning identified the mutation as being within the gene encoding the large subunit of ribonucleotide reductase (RNR1), the enzyme that catalyses the rate-limiting step in the production of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis and repair. Levels of dTTP and dATP were significantly reduced in cls8. Two further mutant cls8 alleles and cls8::RNAi plants show similar or more severe phenotypes. The cls8-1 mutant has fewer copies of the chloroplast genome, and fewer, larger chloroplasts than wild-type plants. The ultrastructure of the chloroplast, however, appears normal in cls8-1 leaves. We present evidence that, under conditions of limited dNTP supply, the inhibition of chloroplast DNA replication may be the primary factor in inducing aberrant growth.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Arabidopsis; chloroplast; dNTP; development; ribonucleotide reductase

Document Type: Research Article

Affiliations: 1: School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK, and 2: School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK

Publication date: April 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more