Skip to main content
padlock icon - secure page this page is secure

Free Content The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

Upon a dark/light shift the conditional flu mutant of Arabidopsis starts to generate singlet oxygen (1O2) that is restricted to the plastid compartment. Distinct sets of genes are activated that are different from those induced by hydrogen peroxide/superoxide. One of the genes that is rapidly upregulated is EDS1 (enhanced disease susceptibility). The EDS1 protein has been shown to be required for the resistance to biotrophic pathogens and the accumulation of salicylic acid (SA) that enhances the defenses of a plant by inducing the synthesis of pathogen-related (PR) proteins. Because of the similarity of its N-terminal portion to the catalytic site of lipases, EDS1 has also been implicated with the release of polyunsaturated fatty acids and the subsequent formation of various oxylipins. The release of singlet oxygen in the flu mutant triggers a drastic increase in the concentration of free SA and activates the expression of PR1 and PR5 genes. These changes depend on the activity of EDS1 and are suppressed in flu/eds1 double mutants. Soon after the beginning of singlet oxygen production, the synthesis of oxylipins such as jasmonic acid (JA) and 12-oxophytodienoic acid (OPDA) also start and plants stop growing and induce a cell-death response. The inactivation of EDS1 does not affect oxylipin synthesis, growth inhibition and the initiation of cell death, but it does allow plants to recover much faster from singlet oxygen-mediated growth inhibition and it also suppresses the spread of necrotic lesions in leaves. Hence, singlet oxygen activates a complex stress-response program with EDS1 playing a key role in initiating and modulating several steps of it. This program includes not only responses to oxidative stress, but also responses known to be activated during plant–pathogen interactions and wounding.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: EDS1; oxidative stress; oxylipin; salicylic acid; singlet oxygen

Document Type: Research Article

Affiliations: 1: Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland, and 2: Albrecht-von-Haller-Institute for Plant Sciences, Plant Biochemistry, Georg-August-University, Göttingen, D-37077 Göttingen, Germany

Publication date: August 1, 2006

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more