Skip to main content
padlock icon - secure page this page is secure

Free Content Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


The virulence and avirulence activities of members of the Pseudomonas syringae HopAB family of effectors and AvrPto were examined in bean, tomato and Arabidopsis. Proteins were delivered by the RW60 strain of P. syringae pv. phaseolicola. RW60 causes a hypersensitive reaction (HR) in bean and tomato but is restricted without the HR in Arabidopsis. Dual avirulence and virulence functions in tomato and bean, respectively, were identified in virPphA homologues but only avrPtoB strongly enhanced virulence to Arabidopsis, overcoming basal defences operating against RW60. Virulence activity in both bean and Arabidopsis required regions of the C-terminus of the AvrPtoB protein, whereas elicitation of the rapid HR in tomato, with the matching Pto resistance gene, did not. The effect of AvrPtoB on Arabidopsis was accession-specific; most obvious in Wassilewskija (Ws-3), intermediate in Columbia and not detectable in Niedersenz (Nd-1) after inoculation with RW60 + avrPtoB. Analysis of crosses between Ws-3 and Nd-1 indicated co-segregation for the AvrPtoB virulence function with the absence of the Nd-1 FLS2 gene which mediates recognition of bacterial flagellin. In planta expression of AvrPtoB did not prevent the HR activated by P. syringae pv. tomato DC3000 + avrB, avrRpm1, avrRps4 or avrRpt2, but suppressed cell wall alterations, including callose deposition, characteristic of basal defence and was associated with reprogramming of the plant's transcriptional response. The success or failure of AvrPtoB in suppressing basal defences in Nd-1 depended on the timing of exposure of plant cells to the effector and the flagellin flg22 peptide.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: bacterial pathogenicity; effector proteins; innate immunity; plant disease resistance

Document Type: Research Article

Affiliations: 1: Division of Biology, Imperial College London, Wye Campus, Ashford, Kent TN25 5AH, UK, 2: Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Cologne, Germany, and 3: Institute of Genetics, Martin-Luther-University, Halle-Wittenberg, Weinbergweg 10, 06099 Halle (Saale), Germany

Publication date: August 1, 2006

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more