Skip to main content
padlock icon - secure page this page is secure

Free Content Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage

Download Article:
 Download
(PDF 337 kb)
 
Summary

Plants use specialized photoreceptors to detect the amount, quality, periodicity and direction of light and to modulate their growth and development accordingly. These regulatory light signals often interact with other environmental cues. Exposure of etiolated Arabidopsis seedlings to red (R) or far-red (FR) light causes hypocotyls to grow in random orientations with respect to the gravitational vector, thus overcoming the signal from gravity to grow upwards. This light response, mediated by either phytochrome A or phytochrome B, represents a prime example of cross-talk between environmental signalling systems. Here, we report the isolation the mutant gil1 (for gravitropic in the light) in which hypocotyls continue to grow upwards after exposure of seedlings to R or FR light. The gil1 mutant displays no other phenotypic alterations in response to gravity or light. Cloning of GIL1 has identified a novel gene that is necessary for light-dependent randomization of hypocotyl growth orientation. Using gil1, we have demonstrated that phytochrome-mediated randomization of Arabidopsis hypocotyl orientation provides a fitness advantage to seedlings developing in patchy, low-light environments.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Arabidopsis; GIL1; fitness; gravitropism; hypocotyl; phytochrome

Document Type: Research Article

Publication date: May 1, 2006

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more