Skip to main content
padlock icon - secure page this page is secure

Free Content The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ‘foxy’ methylanthranilate

Download Article:
(PDF 246.6 kb)

The biosynthesis of methyl anthranilate, the volatile compound responsible for the distinctive ‘foxy’ aroma and flavor of the Washington Concord grape (Vitis labrusca), involves an alcohol acyltransferase that catalyzes the formation of methyl anthranilate from anthraniloyl-coenzyme A (CoA) and methanol. Although methanol is a poor substrate in comparison with the co-substrate, high levels of this acyltransferase (0.5% of the total protein) combined with relatively high levels of this alcohol make this reaction possible in grapes. This 449 amino acid protein belongs to the BAHD family of acyltransferases, having 58% identity with the benzoyl CoA:benzyl alcohol benzoyl transferase from Clarkia. Both native and recombinant enzymes can use a broad range of acyl-CoAs and alcohols as substrates. The ability of Concord grape alcohol acyltransferase to accept a range of different CoA esters and alcohols suggests this to be a versatile ester-forming enzyme, similar to those of other fruits that than can produce a range of fruit esters based on the supply of appropriate substrates. Expression is coordinately regulated, with transcript, protein and enzyme activities coinciding with the accumulation of methyl anthranilate that occurs after the initiation of berry ripening. The majority of acyltransferase protein in grape tissues is localized to the outer fruit mesocarp, a result consistent with the fact that methyl anthranilate is released to the external environment throughout the ripening process. Wine grapes (Vitis vinifera) that accumulate neither anthranilate nor methyl anthranilate do not express this enzyme activity nor do they accumulate this protein.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Concord grape; Vitis labrusca; alcohol acyltransferase gene; methyl anthranilate biosynthesis

Document Type: Research Article

Publication date: November 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more