Skip to main content
padlock icon - secure page this page is secure

Free Content Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3

Download Article:
 Download
(PDF 885.9 kb)
 
Summary

Histones are major components of chromatin, the protein–DNA complex involved in DNA packaging and transcriptional regulation. Histone genes have been extensively investigated at the genome level in animal systems and have been classified as replication dependent, replication independent or tissue specific. However, no such study is available in a plant system. In this paper we report that there are 15 histone H3 genes in the Arabidopsis genome, including five H3.1 genes, three H3.3 genes and five H3.3-like genes. A gene structure analysis revealed that gene duplication causes redundancy of the histone H3 genes. The expression of one of the H3 genes, termed AtMGH3/At1g19890, is cell-specific, being restricted to the generative and sperm cells of Arabidopsis pollen as shown by in situ hybridisation and reporter gene analysis. Thus, we conclude that in Arabidopsis, AtMGH3 is a male-gamete-specific histone H3 gene. A T-DNA insertion line for AtMGH3 revealed decreased expression and ectopic RNA splicing. The T-DNA insertion lines for AtMGH3/At1g19890 and other H3 genes revealed a normal growth phenotype and reproductive fertility. These findings suggest that other H3 genes are likely to compensate for the T-DNA-insertion-induced loss of a single H3 gene because of the high redundancy of these genes in the Arabidopsis genome. These T-DNA mutant lines should be useful for accumulating different H3 gene mutations in a single plant and for studying replication-dependent and replication-independent H3 genes and the specific role of AtMGH3 in chromatin remodelling and transcriptional regulation during development of male gametes.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Arabidopsis; generative cell; histone H3; male gamete variant

Document Type: Research Article

Publication date: November 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more