
An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana
Summary
Phosphatidic acid (PA) functions as a lipid signaling molecule in plants. Physiological analysis showed that PA triggers early signal transduction events that lead to responses to abscisic acid (ABA) during seed germination. We measured PA production during seed germination and found increased PA levels during early germination. To investigate the role of PA during seed germination, we focused on the PA catabolic enzyme lipid phosphate phosphatase (LPP). LPP catalyzes the conversion of PA to diacylglycerol (DAG). There are 4 LPP genes in the Arabidopsis genome. Among them, AtLPP2 and AtLPP3 are expressed during seed germination. Two AtLPP2 T-DNA insertional mutants (lpp2-1 and lpp2-2) showed hypersensitivity to ABA and significant PA accumulation during germination. Furthermore, double-mutant analysis showed that ABA-insensitive 4 (ABI4) is epistatic to AtLPP2 but ABA-insensitive 3 (ABI3) is not. These results suggest that PA is involved in ABA signaling and that AtLPP2 functions as a negative regulator upstream of ABI4, which encodes an AP2-type transcription factor, in ABA signaling during germination.
Phosphatidic acid (PA) functions as a lipid signaling molecule in plants. Physiological analysis showed that PA triggers early signal transduction events that lead to responses to abscisic acid (ABA) during seed germination. We measured PA production during seed germination and found increased PA levels during early germination. To investigate the role of PA during seed germination, we focused on the PA catabolic enzyme lipid phosphate phosphatase (LPP). LPP catalyzes the conversion of PA to diacylglycerol (DAG). There are 4 LPP genes in the Arabidopsis genome. Among them, AtLPP2 and AtLPP3 are expressed during seed germination. Two AtLPP2 T-DNA insertional mutants (lpp2-1 and lpp2-2) showed hypersensitivity to ABA and significant PA accumulation during germination. Furthermore, double-mutant analysis showed that ABA-insensitive 4 (ABI4) is epistatic to AtLPP2 but ABA-insensitive 3 (ABI3) is not. These results suggest that PA is involved in ABA signaling and that AtLPP2 functions as a negative regulator upstream of ABI4, which encodes an AP2-type transcription factor, in ABA signaling during germination.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: ABI4; abscisic acid; diacylglycerolpyrophosphate; germination; phosphatidic acid; phospholipid signaling
Document Type: Research Article
Affiliations: 1: Plant Molecular Biology Laboratory, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan, 2: Experimental Plant Division, RIKEN Tsukuba Institute, Bioresource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan, and 3: Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
Publication date: July 1, 2005