Skip to main content
padlock icon - secure page this page is secure

Free Content Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense

Download Article:
 Download
(PDF 1,378.8 kb)
 
Summary

Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. To uncover regulatory mechanisms of glucosinolate production, we screened Arabidopsis thaliana T-DNA activation-tagged lines and identified a high-glucosinolate mutant caused by overexpression of IQD1 ( At3g09710). A series of gain- and loss-of-function IQD1 alleles in different accessions correlates with increased and decreased glucosinolate levels, respectively. IQD1 encodes a novel protein that contains putative nuclear localization signals and several motifs known to mediate calmodulin binding, which are arranged in a plant-specific segment of 67 amino acids, called the IQ67 domain. We demonstrate that an IQD1-GFP fusion protein is targeted to the cell nucleus and that recombinant IQD1 binds to calmodulin in a Ca2+-dependent fashion. Analysis of steady-state messenger RNA levels of glucosinolate pathway genes indicates that IQD1 affects expression of multiple genes with roles in glucosinolate metabolism. Histochemical analysis of tissue-specific IQD1::GUS expression reveals IQD1 promoter activity mainly in vascular tissues of all organs, consistent with the expression patterns of several glucosinolate-related genes. Interestingly, overexpression of IQD1 reduces insect herbivory, which we demonstrated in dual-choice assays with the generalist phloem-feeding green peach aphid (Myzus persicae), and in weight-gain assays with the cabbage looper (Trichoplusia ni), a generalist-chewing lepidopteran. As IQD1 is induced by mechanical stimuli, we propose IQD1 to be novel nuclear factor that integrates intracellular Ca2+ signals to fine-tune glucosinolate accumulation in response to biotic challenge.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Arabidopsis; calmodulin-binding protein; genetic screen; glucosinolates; nuclear localization; secondary metabolism

Document Type: Research Article

Affiliations: 1: Plant Sciences and 2: Entomology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA

Publication date: July 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more