Skip to main content
padlock icon - secure page this page is secure

Free Content Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


RNA interference (RNAi), the double-stranded RNA (dsRNA) triggered post-transcriptional gene silencing, is becoming a powerful tool for reverse genetics studies. Stable RNAi, induced by the expression of inverted repeat (IR) transgenes, has been achieved in protozoa, algae, fungi, plants, and metazoans. However, the level of gene silencing is often quite variable, depending on the type of construct, transgene copy number, site of integration, and target gene. This is a hindrance in functional genomics studies, where it is desirable to suppress target genes reliably to analyze unknown phenotypes. Consequently, we explored strategies for direct selection of effective transgenic RNAi lines in Chlamydomonas reinhardtii. We initially attempted to suppress expression of the Rubisco small subunit multigene family by placing an IR, homologous to the conserved coding sequence, in the 3′UTR of a transgene conferring resistance to bleomycin. However, this approach was fairly inefficient at inducing RNAi as many strains displayed defective transgene integration, resulting in partial or complete deletion of the IR, or low levels of dsRNA expression, presumably due to transcriptional silencing of the integrated IR transgenes. To overcome these problems we designed a system consisting of tandem IR transgenes that consistently triggered co-silencing of a gene with a selectable RNAi-induced phenotype (encoding tryptophan synthase β subunit) and another gene of interest (encoding either Ku80, an RNA-binding protein, or a thioredoxin isoform). We anticipate that this approach will be useful for generating stable hypomorphic epi-mutants in high-throughput phenotypic screens.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: RNA interference; functional genomics; inverted repeat transgene; post-transcriptional gene silencing; reverse genetics

Document Type: Research Article

Affiliations: 1: School of Biological Sciences and Plant Science Initiative, University of Nebraska-Lincoln, E215 Beadle Center, PO Box 880666, Lincoln, NE 68588, USA, and 2: Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 355 Ross, Baltimore, MD 21205, USA

Publication date: November 1, 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more