Skip to main content
padlock icon - secure page this page is secure

Free Content Movement of plant viruses is delayed in a -1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition

Download Article:
 Download
(PDF)
 
Summary

Susceptibility to virus infection is decreased in a class I -1,3-glucanase (GLU I)-deficient mutant (TAG4.4) of tobacco generated by antisense transformation. TAG4.4 exhibited delayed intercellular trafficking via plasmodesmata of a tobamovirus (tobacco mosaic virus), of a potexvirus (recombinant potato virus X expressing GFP), and of the movement protein (MP) 3a of a cucumovirus (cucumber mosaic virus). Monitoring the cell-to-cell movement of dextrans and peptides by a novel biolistic method revealed that the plasmodesmatal size exclusion limit (SEL) of TAG4.4 was also reduced from 1.0 to 0.85 nm. Therefore, GLU I-deficiency has a broad effect on plasmodesmatal movement, which is not limited to a particular virus type. Deposition of callose, a substrate for -1,3-glucanases, was increased in TAG4.4 in response to 32°C treatment, treatment with the fungal elicitor xylanase, and wounding, suggesting that GLU I has an important function in regulating callose metabolism. Callose turnover is thought to regulate plasmodesmatal SEL. We propose that GLU I induction in response to infection may help promote MP-driven virus spread by degrading callose.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland

Publication date: January 1, 2000

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more