Skip to main content
padlock icon - secure page this page is secure

Free Content Oxygen deprivation stimulates Ca2+-mediated phosphorylation of mRNA cap-binding protein eIF4E in maize roots

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Flooding of maize seedlings causes O2 deprivation that leads to a global reduction in protein synthesis and selective translation of cytoplasmic mRNAs. Since selective translation in animal cells can involve the cap-binding protein eIF4E, we characterized the distinct mRNA cap-binding proteins eIF4E and eIFiso4E of maize. These proteins have 45% deduced amino acid sequence identity and are highly conserved at residues of eIF4E that function in intermolecular interactions in animals. Maize eIF4E is a phosphoprotein. O2 deprivation resulted in a decrease in the isoelectric point of eIF4E, consistent with additional phosphorylation. Modification of eIF4E was mimicked by treatment with caffeine under aerobic conditions and blocked by treatment with ruthenium red under O2 deprivation, implicating Ca2+ as a second messenger in eIF4E modification. In contrast, no isoelectric variants of eIFiso4E were detected. The possible role of cytosolic Ca2+ and pH in regulation of mRNA cap-binding protein activity under O2 deprivation is discussed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Original Article

Affiliations: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA

Publication date: July 1, 1999

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more