Skip to main content
padlock icon - secure page this page is secure

Free Content Immunolocalization of a novel annexin‐like protein encoded by a stress and abscisic acid responsive gene in alfalfa

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


We report here on the isolation and characterization of a full‐length cDNA clone from alfalfa termed AnnMs2 encoding a 333 amino acid long polypeptide that shows 32–37% sequence identity with both mammalian and plant annexins, and has four tandem repeats. While other plant annexins exhibit a high level of sequence similarity to each other (up to 77% identity at amino acid level), AnnMs2 appears to be a distinct type of plant annexins. All the four endonexin folds contain the conserved eukaryotic motif within this alfalfa protein, but this element is considerably different in the second repeat. The AnnMs2 gene is expressed in various tissues of alfalfa with elevated mRNA accumulation in root and flower. This gene is activated in cells or tissues exposed to osmotic stress, abscisic acid (ABA) or water deficiency. The recombinant AnnMs2 protein is able to bind to phospholipid in the presence of Ca2+. Indirect immunofluorescence studies using affinity purified rabbit anti‐AnnMs2 peptide antibody show mainly nucleolar localization, but the protein sequence lacks the usual nuclear localization signal. The potential role of this novel annexin‐like protein in the basic and stress‐induced cellular functions is discussed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Original Article

Publication date: July 1, 1998

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more