Skip to main content
padlock icon - secure page this page is secure

Free Content Molecular cloning and functional expression in yeast of CYP76B1, a xenobiotic-inducible 7-ethoxycoumarin O-de-ethylase from Helianthus tuberosus

Download Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Summary

In order to obtain plant markers of chemical stress and possible tools for the bio-monitoring of pollution, a protein purification/PCR approach was used to isolate cDNAs of xenobiotic-inducible P450 oxygenases. O-dealkylation of 7-ethoxycoumarin is catalysed in Helianthus tuberosus by cytochromes P450 strongly inducible by a wide range of xenobiotics. Therefore, a 7-ethoxycoumarin O-de-ethylase (ECOD) was purified from induced tuber tissues (Batard et al. 1995). A primer designed from an internal peptide sequence, but also corresponding to a conserved P450 haem-binding region, led to the generation of a gene-specific probe corresponding to a P450 strongly inducible by aminopyrine. Two partial and 98% identical coding sequences were isolated from a cDNA library prepared from aminopyrine-induced tuber. A full-length cDNA was reconstituted by 5\'-RACE elongation. The protein deduced from this full-length sequence, with 41.1% amino acid identity to CYP76A1 and high phylogenetic relationship to other CYP76s, was termed CYP76B1. CYP76B1 was expressed in yeast. Microsomes from the transformed yeast catalysed the NADPH-dependent O-deakylation of 7-ethoxycoumarin. However, protein sequence as well as enzymological data indicated that CYP76B1 does not correspond to the purified ECOD protein. These results confirm previous data and demonstrate that several P450s in H. tuberosus are capable of actively catalysing the O-de-ethylation of ethoxycoumarin.

Determination of the steady-state level of CYP76B1 transcripts after slicing tuber tissues and ageing them in water, alone or in the presence of various chemicals, showed that the expression of this P450 was not responsive to mechanical stress, but was strongly induced by chemical treatments. CYP76B1 thus appears to be a good potential marker of chemical stress and of environmental pollution.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Departement d'Enzymologie Cellulaire et Moleculaire, Institut de Biologie Moleculaire des Plantes, CNRS UPR 406, 28 rue Goethe, F-67000 Strasbourg, France

Publication date: April 1, 1998

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more