Skip to main content
padlock icon - secure page this page is secure

Free Content Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Camptothecin (CPT) is a valuable anti-cancer monoterpene alkaloid produced by the Chinese tree Camptotheca acuminata. Tryptophan decarboxylase (TDC) supplies tryptamine for the indole moiety of CPT and its derivatives, and is considered a key step in monoterpene indole alkaloid biosynthesis as it links primary and secondary metabolism. This report describes the isolation and characterization of tdc1 and tdc2, two autonomously regulated TDC genes from Camptotheca. When expressed in Escherichia coli, the products of each gene could decarboxylate tryptophan, but were inactive against tyrosine, phenylalanine and 3,4-dihydroxyphenylalanine (dopa). tdc1 was developmentally regulated, having its highest expression level in the apex, young stem and bark, tissues which also contain the highest levels of CPT. Expression of tdc1 also increased during seedling development and was correlated with alkaloid accumulation during germination. tdc2 expression was induced in Camptotheca leaf discs and cell suspension cultures treated with fungal elicitor or methyl jasmonate, treatments which did not affect tdc1 expression. Unlike tdc1, tdc2 expression was not detected in any unstressed Camptotheca tissues nor in developing seedlings. These data suggest that tdc1 may be part of a developmentally regulated chemical defense system in Camptotheca, while tdc2 serves as part of a defense system induced during pathogen challenge.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: June 1, 1997

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more