Skip to main content
padlock icon - secure page this page is secure

Free Content A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae)

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

ABSTRACT

Almost all parasitic plants, including more than 3000 species, are angiosperms. The only suggested gymnosperm exception is the New Caledonian conifer, Parasitaxus ustus, which forms a bizarre graft-like attachment to the roots of another conifer Falcatifolium taxoides. Yet, the degree of resource dependence of Parasitaxus on Falcatifolium has remained speculative. Here we show that Parasitaxus is definitively parasitic, but it displays a physiological habit unlike any known angiosperm parasite. Despite possessing chloroplasts, it was found that the burgundy red shoots of Parasitaxus lack significant photosynthetic electron transport. However unlike non-photosynthetic angiosperm parasites (holoparasites), tissues of Parasitaxus are considerably enriched in 13carbon relative to its host. In line with anatomical observations of fungal hyphae embedded in the parasite/host union, stable carbon isotopic measurements indicate that carbon transport from the host to Parasitaxus most likely involves a fungal partner. Therefore, Parasitaxus parallels fungus-feeding angiosperms (mycoheterotrophs) that steal carbon from soil mycorrhizal fungi. Yet with its tree-like habit, association with fungi residing within the host union, high stomatal conductance, and low water potential, it is demonstrated that Parasitaxus functions unlike any known angiosperm mycoheterotroph or holoparasite. Parasitaxus appears to present a unique physiological chimera of mistletoe-like water relations and fungal-mediated carbon trafficking from the host.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Parasitaxus ustus; carbon isotopic; holoparasitic; mistletoe; mycoheterotroph; parasitic plants

Document Type: Research Article

Affiliations: Department of Plant Sciences, University of Tasmania, Tasmania, Australia

Publication date: 01 October 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more