Skip to main content
padlock icon - secure page this page is secure

The Vitis vinifera C‐repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape

Buy Article:

$43.00 + tax (Refund Policy)

Summary

Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C‐repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. ‘Freedom’ and found to improve freezing survival and reduced freezing‐induced electrolyte leakage by up to 2 °C in non‐cold‐acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose‐dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9–12) was genotyped using microarray‐based mRNA expression profiling. Forty‐seven and 12 genes were identified in unstressed transgenic shoots with either a >1.5‐fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps, suggesting that CBF‐mediated cold acclimation responses are widely conserved. Putative VvCBF4‐regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation and stress‐responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA

Publication date: 01 January 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more